Source: The New York Times
We are about to find out just how generous nature really is.
On Tuesday, astronomers operating NASA’s Kepler spacecraft will release a list of about 350 stars newly suspected of harboring planets, including five systems with multiple candidate planets. That data could dramatically swell the inventory of alien worlds, which now stands at 461, none of them habitable by the likes of us.
Astronomers everywhere, who have been waiting since Kepler’s launch in March 2009 to get their hands on this data, will be rushing to telescopes to examine these stars in the hopes of advancing the grand quest of finding Earthlike planets capable of harboring life out there.
But a lot of attention has been paid in astronomical circles over the past few months to what the Kepler team will not be saying. By agreement with NASA, the team is holding back data on its 400 brightest and best planet candidates, which the astronomers intend to observe themselves over a busy summer.
NASA’s policy requires astronomers to release their data from instruments like the Hubble Space Telescope in a year, but the Kepler astronomers say launch delays and other problems robbed them of the observing time they needed to check out their planet candidates, which are only visible from the ground from April until September. An extension of the deadline is needed, they say, to guard against a flood of bogus claims — “false positives” — by other astronomers misinterpreting their data.
“If I sent you 0’s and 1’s, it would be useless,” said William Borucki, Kepler’s leader, from the Ames Research Laboratory at Moffett Field in California. The public wants answers to the age-old question of whether the Earth is unique, he said.
“If we say, ‘Yes, they are small planets,’ ” he went on, “you can be sure they are.”
The decision to hold back some data, reported on Nature.com, has divided astronomers. Some say say they do not begrudge the Kepler scientists — who have in some cases devoted their careers to the project — a few more months with their data.
Paul Kalas of the University of California, Berkeley, who used Hubble to take one of the first images of an exoplanet in 2008, said, “The stakes aren’t that high compared to human subject experiments, where a six-month delay has real consequences when therapies might become available for diseases.”
But the sequestering of the data, even temporarily, has irritated other astronomers, who believe that it is antithetical to the ideal of scientific openness.
“Kepler was constructed and launched with a comparatively large sum of money for a project that is run by a single team,” said Ben Oppenheimer, an astronomer at the American Museum of Natural History in New York, in an e-mail message. “At this point, I have to say I do think they are being far too restrictive.”
B. Scott Gaudi, an astronomer and planet hunter at Ohio State University, said there were more planet candidates than the Kepler team members could check by themselves. “They need help,” he said. “If they were more open they would be able to get more science out.”
But then he added: “Who am I to say this? I didn’t put 10 years of my life into this.”
Nobody denies that the stakes, both personal and institutional, are huge.
“The first astronomer who can prove they found an Earthlike planet around an Earthlike star will win many kudos and prizes,” said John Huchra of the Harvard-Smithsonian Center for Astrophysics, who led a NASA advisory committee that approved the deal. “It’s glory for NASA,” he added.“NASA would like to have one of its missions find an Earthlike planet.”
The fate of data — who owns it and who gets to see it, and when — has become one of the more contentious issues in science, scientists say.
In the past, scientific data consisted of carefully inked notations in research notebooks, bound, with numbered pages, accumulating on a bookshelf in the office or lab, or photographic plates in yellowing envelopes sitting in a filing cabinet. And it was proprietary, meaning it was yours forever to publish or mull endlessly as you desired.
Today, it often consists of billions or trillions of 1’s and 0’s reposing in vast digital archives, whose capacity is measured in terabytes or petabytes, buttressed by the giant computer programs that process it and the reams of ancillary information, dubbed metadata, that give it context.
In the era of the Web, all this information can be sent around the globe at the click of a mouse, retrieved and manipulated by anyone who wants to use it to better understand the nature of dark matter, argue about the safety or desirability of nuclear power, or decide how much salt to put in her food.
To read more: http://www.nytimes.com/2010/06/15/science/space/15kepler.html?ref=science